Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.204
Filtrar
1.
Sci Rep ; 14(1): 8930, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637572

RESUMEN

In the last decades, dengue has become one of the most widespread mosquito-borne arboviruses in the world, with an increasing incidence in tropical and temperate regions. The mosquito Aedes aegypti is the dengue primary vector and is more abundant in highly urbanized areas. Traditional vector control methods have showing limited efficacy in sustaining mosquito population at low levels to prevent dengue virus outbreaks. Considering disease transmission is not evenly distributed in the territory, one perspective to enhance vector control efficacy relies on identifying the areas that concentrate arbovirus transmission within an endemic city, i.e., the hotspots. Herein, we used a 13-month timescale during the SARS-Cov-2 pandemic and its forced reduction in human mobility and social isolation to investigate the spatiotemporal association between dengue transmission in children and entomological indexes based on adult Ae. aegypti trapping. Dengue cases and the indexes Trap Positive Index (TPI) and Adult Density Index (ADI) varied seasonally, as expected: more than 51% of cases were notified on the first 2 months of the study, and higher infestation was observed in warmer months. The Moran's Eigenvector Maps (MEM) and Generalized Linear Models (GLM) revealed a strong large-scale spatial structuring in the positive dengue cases, with an unexpected negative correlation between dengue transmission and ADI. Overall, the global model and the purely spatial model presented a better fit to data. Our results show high spatial structure and low correlation between entomological and epidemiological data in Foz do Iguaçu dengue transmission dynamics, suggesting the role of human mobility might be overestimated and that other factors not evaluated herein could be playing a significant role in governing dengue transmission.


Asunto(s)
Aedes , Dengue , Animales , Adulto , Niño , Humanos , Brasil/epidemiología , Mosquitos Vectores , Análisis Espacial , Ciudades/epidemiología
2.
PLoS Negl Trop Dis ; 18(4): e0012081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630673

RESUMEN

BACKGROUND: Dengue virus (DENV) is endemic to many parts of the world and has serious health and socioeconomic effects even in high-income countries, especially with rapid changes in the climate globally. We explored the literature on dengue vector control methods used in high-income, city settings and associations with dengue incidence, dengue prevalence, or mosquito vector densities. METHODS: Studies of any design or year were included if they reported effects on human DENV infection or Aedes vector indices of dengue-specific vector control interventions in high-income, city settings. RESULTS: Of 24 eligible sources, most reported research in the United States (n = 8) or Australia (n = 5). Biocontrol (n = 12) and chemical control (n = 13) were the most frequently discussed vector control methods. Only 6 sources reported data on the effectiveness of a given method in reducing human DENV incidence or prevalence, 2 described effects of larval and adult control on Aedes DENV positivity, 20 reported effectiveness in reducing vector density, using insecticide, larvicide, source reduction, auto-dissemination of pyriproxyfen and Wolbachia, and only 1 described effects on human-vector contact. CONCLUSIONS: As most studies reported reductions in vector densities, rather than any effects on human DENV incidence or prevalence, we can draw no clear conclusions on which interventions might be most effective in reducing dengue in high-income, city areas. More research is needed linking evidence on the effects of different DENV vector control methods with dengue incidence/prevalence or mosquito vector densities in high-income, city settings as this is likely to differ from low-income settings. This is a significant evidence gap as climate changes increase the global reach of DENV. The importance of community involvement was clear in several studies, although it is impossible to tease out the relative contributions of this from other control methods used.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Adulto , Animales , Humanos , Dengue/epidemiología , Mosquitos Vectores , Control de Mosquitos/métodos , Ciudades
3.
J Virol ; : e0151623, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567951

RESUMEN

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.

4.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559113

RESUMEN

Factors that contribute to durable immunological memory remain incompletely understood. In our longitudinal analyses of CD4+ T cell responses to the yellow fever virus (YFV) vaccine by peptide-MHC tetramers, we unexpectedly found naïve phenotype virus-specific CD4+ T cells that persisted months to years after immunization. These Marker negative T cells (TMN) lacked CD95, CXCR3, CD11a, and CD49d surface protein expression, distinguishing them from previously discovered stem-cell memory T cells. Functionally, they resembled genuine naïve T cells upon in vitro stimulation. Single-cell TCR sequencing detected expanded clonotypes within the TMN subset and identified a shared repertoire with memory and effector T cells. T cells expressing TMN-associated TCRs were rare before vaccination, suggesting their expansion following vaccination. Longitudinal tracking of YFV-specific responses over the subsequent years revealed superior stability of the TMN subset and their association with the longevity of the overall population. The identification of these long-lived, antigen-experienced T cells may inform the design of durable T cell-based vaccines and engineered T cell therapies.

5.
Sci Rep ; 14(1): 7709, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565882

RESUMEN

The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.


Asunto(s)
Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Humanos , Adulto , Anticuerpos Neutralizantes , Interleucina-10 , Anticuerpos Antivirales , Factor de Necrosis Tumoral alfa , Linfocitos T CD8-positivos , Vacunación
6.
Proc Biol Sci ; 291(2021): 20240429, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628128

RESUMEN

The global expansion of Aedes albopictus has stimulated the development of environmentally friendly methods aiming to control disease transmission through the suppression of natural vector populations. Sterile male release programmes are currently being deployed worldwide, and are challenged by the availability of an efficient sex separation which can be achieved mechanically at the pupal stage and/or by artificial intelligence at the adult stage, or through genetic sexing, which allows separating males and females at an early development stage. In this study, we combined the genetic sexing strain previously established based on the linkage of dieldrin resistance to the male locus with a Wolbachia transinfected line. For this, we introduced either the wPip-I or the wPip-IV strain from Culex pipiens in an asymbiotic Wolbachia-free Ae. albopictus line. We then measured the penetrance of cytoplasmic incompatibility and life-history traits of both transinfected lines, selected the wPip-IV line and combined it with the genetic sexing strain. Population suppression experiments demonstrated a 90% reduction in population size and a 50% decrease in hatching rate. Presented results showed that such a combination has a high potential in terms of vector control but also highlighted associated fitness costs, which should be reduced before large-scale field assay.


Asunto(s)
Aedes , Culex , Wolbachia , Animales , Femenino , Masculino , Wolbachia/genética , Inteligencia Artificial , Aedes/genética
7.
Cochrane Database Syst Rev ; 4: CD015636, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597256

RESUMEN

BACKGROUND: Dengue is a global health problem of high significance, with 3.9 billion people at risk of infection. The geographic expansion of dengue virus (DENV) infection has resulted in increased frequency and severity of the disease, and the number of deaths has increased in recent years. Wolbachia,an intracellular bacterial endosymbiont, has been under investigation for several years as a novel dengue-control strategy. Some dengue vectors (Aedes mosquitoes) can be transinfected with specific strains of Wolbachia, which decreases their fitness (ability to survive and mate) and their ability to reproduce, inhibiting the replication of dengue. Both laboratory and field studies have demonstrated the potential effect of Wolbachia deployments on reducing dengue transmission, and modelling studies have suggested that this may be a self-sustaining strategy for dengue prevention, although long-term effects are yet to be elucidated. OBJECTIVES: To assess the efficacy of Wolbachia-carrying Aedes speciesdeployments (specifically wMel-, wMelPop-, and wAlbB- strains of Wolbachia) for preventing dengue virus infection. SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, four other databases, and two trial registries up to 24 January 2024. SELECTION CRITERIA: Randomized controlled trials (RCTs), including cluster-randomized controlled trials (cRCTs), conducted in dengue endemic or epidemic-prone settings were eligible. We sought studies that investigated the impact of Wolbachia-carrying Aedes deployments on epidemiological or entomological dengue-related outcomes, utilizing either the population replacement or population suppression strategy. DATA COLLECTION AND ANALYSIS: Two review authors independently selected eligible studies, extracted data, and assessed the risk of bias using the Cochrane RoB 2 tool. We used odds ratios (OR) with the corresponding 95% confidence intervals (CI) as the effect measure for dichotomous outcomes. For count/rate outcomes, we planned to use the rate ratio with 95% CI as the effect measure. We used adjusted measures of effect for cRCTs. We assessed the certainty of evidence using GRADE. MAIN RESULTS: One completed cRCT met our inclusion criteria, and we identified two further ongoing cRCTs. The included trial was conducted in an urban setting in Yogyakarta, Indonesia. It utilized a nested test-negative study design, whereby all participants aged three to 45 years who presented at healthcare centres with a fever were enrolled in the study provided they had resided in the study area for the previous 10 nights. The trial showed that wMel-Wolbachia infected Ae aegypti deployments probably reduce the odds of contracting virologically confirmed dengue by 77% (OR 0.23, 95% CI 0.15 to 0.35; 1 trial, 6306 participants; moderate-certainty evidence). The cluster-level prevalence of wMel Wolbachia-carrying mosquitoes remained high over two years in the intervention arm of the trial, reported as 95.8% (interquartile range 91.5 to 97.8) across 27 months in clusters receiving wMel-Wolbachia Ae aegypti deployments, but there were no reliable comparative data for this outcome. Other primary outcomes were the incidence of virologically confirmed dengue, the prevalence of dengue ribonucleic acid in the mosquito population, and mosquito density, but there were no data for these outcomes. Additionally, there were no data on adverse events. AUTHORS' CONCLUSIONS: The included trial demonstrates the potential significant impact of wMel-Wolbachia-carrying Ae aegypti mosquitoes on preventing dengue infection in an endemic setting, and supports evidence reported in non-randomized and uncontrolled studies. Further trials across a greater diversity of settings are required to confirm whether these findings apply to other locations and country settings, and greater reporting of acceptability and cost are important.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Wolbachia , Animales , Humanos , Aedes/microbiología , Mosquitos Vectores/microbiología , Dengue/prevención & control
8.
PLoS One ; 19(3): e0297964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38437189

RESUMEN

Wolbachia is an endosymbiont bacterium present in many insect species. When Wolbachia-carrying male Aedes aegypti mosquitoes mate with non-carrier females, their embryos are not viable due to cytoplasmic incompatibility. This phenomenon has been exploited successfully for the purpose of controlling mosquito populations and the spread of mosquito-borne illnesses: Wolbachia carriers are bred and released into the environment. Because Wolbachia is not harmful to humans, this method of mosquito control is regarded as a safer alternative to pesticide spraying. In this article, we introduce a mathematical framework for exploring (i) whether a one-time release of Wolbachia carriers can elicit a sustained presence of carriers near the release site, and (ii) the extent to which spatial propagation of carriers may allow them to establish fixation in other territories. While some prior studies have formulated mosquito dispersal models using advection-reaction-diffusion PDEs, the predictive power of such models requires careful ecological mapping: advection and diffusion coefficients exhibit significant spatial dependence due to heterogeneity of resources and topography. Here, we adopt a courser-grained view, regarding the environment as a network of discrete, diffusively-coupled "habitats"-distinct zones of high mosquito density such as stagnant ponds. We extend two previously published single-habitat mosquito models to multiple habitats, and calculate rates of migration between pairs of habitats using dispersal kernels. Our primary results are quantitative estimates regarding how the success of carrier fixation in one or more habitats is determined by: the number of carriers released, sizes of habitats, distances between habitats, and the rate of migration between habitats. Besides yielding sensible and potentially useful predictions regarding the success of Wolbachia-based control, our framework applies to other approaches (e.g., gene drives) and contexts beyond the realm of insect pest control.


Asunto(s)
Aedes , Charadriiformes , Wolbachia , Femenino , Humanos , Animales , Masculino , Citoplasma , Citosol
9.
NPJ Vaccines ; 9(1): 54, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459059

RESUMEN

The re-emergence of yellow fever (YF) urged new mass vaccination campaigns and, in 2017, the World Health Organization approved the use of the fractional dose (FD) of the YF vaccine due to stock shortage. In an observational cross-sectional investigation, we have assessed viremia, antibodies, soluble mediators and effector and memory T and B-cells induced by primary vaccination of volunteers with FD and standard dose (SD). Similar viremia and levels of antibodies and soluble markers were induced early after immunization. However, a faster decrease in the latter was observed after SD. The FD led to a sustained expansion of helper T-cells and an increased expression of activation markers on T-cells early after vaccination. Although with different kinetics, expansion of plasma cells was induced upon SD and FD immunization. Integrative analysis reveals that FD induces a more complex network involving follicular helper T cells and B-cells than SD. Our findings substantiate that FD can replace SD inducing robust correlates of protective immune response against YF.

10.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38463973

RESUMEN

During major, recent yellow fever (YF) epidemics in Brazil, human cases were attributed only to spillover infections from sylvatic transmission with no evidence of human amplification. Furthermore, the historic absence of YF in Asia, despite abundant peridomestic Aedes aegypti and naive human populations, represents a longstanding enigma. We tested the hypothesis that immunity from dengue (DENV) and Zika (ZIKV) flaviviruses limits YF virus (YFV) viremia and transmission by Ae. aegypti . Prior DENV and ZIKV immunity consistently suppressed YFV viremia in experimentally infected macaques, leading to reductions in Ae. aegypti infection when mosquitoes were fed on infected animals. These results indicate that, in DENV- and ZIKV-endemic regions such as South America and Asia, flavivirus immunity suppresses YFV human amplification potential, reducing the risk of urban outbreaks. One-Sentence Summary: Immunity from dengue and Zika viruses suppresses yellow fever viremia, preventing infection of mosquitoes and reducing the risk of epidemics.

11.
J Am Mosq Control Assoc ; 40(1): 32-49, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427588

RESUMEN

The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.


Asunto(s)
Aedes , Wolbachia , Animales , Humanos , Control de Mosquitos/métodos , Mosquitos Vectores , Insectos
12.
Sci Rep ; 14(1): 5628, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454095

RESUMEN

Vector control is a key intervention against mosquito borne diseases. However, conventional methods have several limitations and alternate strategies are in urgent need. Vector control with endectocides such as ivermectin is emerging as a novel strategy. The short half-life of ivermectin is a limiting factor for its application as a mass therapy tool for vector control. Isoxazoline compounds like fluralaner, a class of veterinary acaricides with long half-life hold promise as an alternative. However, information about their mosquitocidal effect is limited. We explored the efficacy of fluralaner against laboratory reared vector mosquitoes-Aedes aegypti, Anopheles stephensi, and, Culex quinquefasciatus. 24 h post-blood feeding, fluralaner showed a significant mosquitocidal effect with LC50 values in the range of 24.04-49.82 ng/mL for the three different mosquito species tested. Effects on life history characteristics (fecundity, egg hatch success, etc.) were also observed and significant effects were noted at drug concentrations of 20, 25 and 45 ng/mL for Ae. aegypti, An. stephensi, and, Cx. quinquefasciatus respectively. At higher drug concentration of 250 ng/mL, significant mortality was observed within 1-2 h of post blood feeding. Potent mosquitocidal effect coupled with its long half-life makes fluralaner an excellent candidate for drug based vector control strategies.


Asunto(s)
Aedes , Anopheles , Culex , Insecticidas , Isoxazoles , Animales , Ivermectina/farmacología , Insecticidas/farmacología , Mosquitos Vectores , Larva , Extractos Vegetales/farmacología
13.
Parasit Vectors ; 17(1): 117, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454517

RESUMEN

BACKGROUND: Indoor residual spraying (IRS) capitalizes on the natural behavior of mosquitoes because Aedes aegypti commonly seeks indoor resting sites after a blood meal. This behavior allows mosquitoes to be exposed to insecticide-treated surfaces and subsequently killed. Combinations of deltamethrin and clothianidin with different modes of action have shown promise in IRS, effectively targeting both susceptible and pyrethroid-resistant malaria vectors. However, the effects of this approach on Aedes mosquitoes remain unclear. The present study tested the effects of deltamethrin-clothianidin mixture treatment on behavioral responses and life history traits of Taiwanese and Indonesian populations of Ae. aegypti. METHODS: We adopted an excito-repellent approach to explore the behavioral responses of pyrethroid-resistant Ae. aegypti populations from Indonesia and Taiwan to a deltamethrin-clothianidin mixture used in contact irritancy and non-contact repellency treatments. We further evaluated the life history traits of surviving mosquitoes (i.e., delayed mortality after 7-day post-treatment, longevity, fecundity, and egg hatching) and investigated the potential transgenerational hormetic effects of insecticide exposure (i.e., development rate and survival of immatures and adult mosquitos). RESULTS: All tested field populations of Ae. aegypti displayed strong contact irritancy responses; the percentage of escape upon insecticide exposure ranged from 38.8% to 84.7%. However, repellent effects were limited, with the escape percentage ranging from 4.3% to 48.9%. We did not observe immediate knockdown or mortality after 24 h, and less than 15% of the mosquitoes exhibited delayed mortality after a 7-day exposure period. However, the carryover effects of insecticide exposure on the survival of immature mosquitoes resulted in approximately 25% higher immature mortality than that in the control. By contrast, we further documented stimulated survivor reproduction and accelerated transgenerational immature development resulting from the sublethal effects of the insecticide mixture. In particular, the number of eggs laid by treated (both treatments) female mosquitoes increased by at least 60% compared with that of eggs laid by control female mosquitoes. CONCLUSIONS: IRS with deltamethrin-clothianidin effectively deters Aedes mosquitoes from entering residential areas and thereby reduces mosquito bites. However, the application rate (deltamethrin: 25 mg/m2; clothianidin: 200 mg/m2) may be insufficient to effectively kill Aedes mosquitoes. Insecticide response appears to vary across mosquito species; their behavioral and physiological responses to sublethal doses have crucial implications for mosquito control programs.


Asunto(s)
Aedes , Guanidinas , Insecticidas , Rasgos de la Historia de Vida , Neonicotinoides , Nitrilos , Piretrinas , Tiazoles , Femenino , Animales , Insecticidas/farmacología , Aedes/fisiología , Indonesia , Resistencia a los Insecticidas , Óvulo , Piretrinas/farmacología , Control de Mosquitos/métodos , Mosquitos Vectores
14.
Environ Microbiol ; 26(3): e16588, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38450576

RESUMEN

Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti.


Asunto(s)
Aedes , Dengue , Wolbachia , Animales , Burkina Faso/epidemiología , Wolbachia/genética , Asia , Dengue/prevención & control
15.
Health Sci Rep ; 7(2): e1924, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38444843

RESUMEN

Background and Aims: The acute tropical infectious disease known as yellow fever (YF) is caused by an arbovirus and is characterized by fever, jaundice, hemorrhage, headache, muscle pain, nausea, vomiting, and fatigue. Angola experienced a yellow fever virus (YFV) outbreak that was documented in December 2015. However, little is known about the outcome of this outbreak. We aimed to demonstrate epidemic features and lessons learned during the YF epidemic in Angola. Methods: A total of 4618 blood samples from suspected YF cases were sent to the Instituto Nacional de Investigação em Saúde (INIS), a national referral and public health laboratory, between December 5, 2015, and December 23, 2016. Sample analyses were conducted using enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR) assays. Blood samples were sent from 16 out of the 18 provinces of Angola. Results: We detected 884 (19.1%) cases that were positive for ELISA, which were confirmed by RT-PCR assay. Considering the positive cases, the incidence among male patients was around three times higher (n = 223; 10.9%) than in female patients (n = 59; 2.6%) in the 20-29 age group, followed by the age group 10-19 with n = 211 (6.8%) in males versus n = 108 (3.3%) in females; and the age group 30-39 had n = 68 (4.8%) in males versus n = 28 (1.8%) in females. The other groups had an incidence below 3.0%. The case fatality ratio for YF was in young adults in the age group 20-29 with n = 39 cases, followed by the age group 10-19 with n = 16 cases, and finally the age group 0-9 with n = 13 cases. The other age groups had several deaths by YF below 10 cases. Conclusions: This study demonstrates features of the YF epidemic that occurred in Angola. Also, it demonstrates that YF causes deaths in young people but is preventable by high vaccine coverage. Thus, public health laboratory surveillance must be strengthened to reduce the possibility of emerging and re-emerging human infections.

16.
Lancet Glob Health ; 12(4): e563-e571, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485425

RESUMEN

BACKGROUND: There have been declines in global immunisation coverage due to the COVID-19 pandemic. Recovery has begun but is geographically variable. This disruption has led to under-immunised cohorts and interrupted progress in reducing vaccine-preventable disease burden. There have, so far, been few studies of the effects of coverage disruption on vaccine effects. We aimed to quantify the effects of vaccine-coverage disruption on routine and campaign immunisation services, identify cohorts and regions that could particularly benefit from catch-up activities, and establish if losses in effect could be recovered. METHODS: For this modelling study, we used modelling groups from the Vaccine Impact Modelling Consortium from 112 low-income and middle-income countries to estimate vaccine effect for 14 pathogens. One set of modelling estimates used vaccine-coverage data from 1937 to 2021 for a subset of vaccine-preventable, outbreak-prone or priority diseases (ie, measles, rubella, hepatitis B, human papillomavirus [HPV], meningitis A, and yellow fever) to examine mitigation measures, hereafter referred to as recovery runs. The second set of estimates were conducted with vaccine-coverage data from 1937 to 2020, used to calculate effect ratios (ie, the burden averted per dose) for all 14 included vaccines and diseases, hereafter referred to as full runs. Both runs were modelled from Jan 1, 2000, to Dec 31, 2100. Countries were included if they were in the Gavi, the Vaccine Alliance portfolio; had notable burden; or had notable strategic vaccination activities. These countries represented the majority of global vaccine-preventable disease burden. Vaccine coverage was informed by historical estimates from WHO-UNICEF Estimates of National Immunization Coverage and the immunisation repository of WHO for data up to and including 2021. From 2022 onwards, we estimated coverage on the basis of guidance about campaign frequency, non-linear assumptions about the recovery of routine immunisation to pre-disruption magnitude, and 2030 endpoints informed by the WHO Immunization Agenda 2030 aims and expert consultation. We examined three main scenarios: no disruption, baseline recovery, and baseline recovery and catch-up. FINDINGS: We estimated that disruption to measles, rubella, HPV, hepatitis B, meningitis A, and yellow fever vaccination could lead to 49 119 additional deaths (95% credible interval [CrI] 17 248-134 941) during calendar years 2020-30, largely due to measles. For years of vaccination 2020-30 for all 14 pathogens, disruption could lead to a 2·66% (95% CrI 2·52-2·81) reduction in long-term effect from 37 378 194 deaths averted (34 450 249-40 241 202) to 36 410 559 deaths averted (33 515 397-39 241 799). We estimated that catch-up activities could avert 78·9% (40·4-151·4) of excess deaths between calendar years 2023 and 2030 (ie, 18 900 [7037-60 223] of 25 356 [9859-75 073]). INTERPRETATION: Our results highlight the importance of the timing of catch-up activities, considering estimated burden to improve vaccine coverage in affected cohorts. We estimated that mitigation measures for measles and yellow fever were particularly effective at reducing excess burden in the short term. Additionally, the high long-term effect of HPV vaccine as an important cervical-cancer prevention tool warrants continued immunisation efforts after disruption. FUNDING: The Vaccine Impact Modelling Consortium, funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation. TRANSLATIONS: For the Arabic, Chinese, French, Portguese and Spanish translations of the abstract see Supplementary Materials section.


Asunto(s)
COVID-19 , Hepatitis B , Sarampión , Meningitis , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Rubéola (Sarampión Alemán) , Enfermedades Prevenibles por Vacunación , Fiebre Amarilla , Humanos , Infecciones por Papillomavirus/prevención & control , Pandemias , COVID-19/epidemiología , COVID-19/prevención & control , Vacunación , Inmunización , Hepatitis B/tratamiento farmacológico
17.
Antiviral Res ; 225: 105858, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490342

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne virus transmitted by Aedes mosquitoes. While there are no antiviral therapies currently available to treat CHIKV infections, several licensed oral drugs have shown significant anti-CHIKV activity in cells and in mouse models. However, the efficacy in mosquitoes has not yet been assessed. Such cross-species antiviral activity could be favorable, since virus inhibition in the mosquito vector might prevent further transmission to vertebrate hosts. Here, we explored the antiviral effect of ß-d-N4-hydroxycytidine (NHC, EIDD-1931), the active metabolite of molnupiravir, on CHIKV replication in Aedes aegypti mosquitoes. Antiviral assays in mosquito cells and in ex vivo cultured mosquito guts showed that NHC had significant antiviral activity against CHIKV. Exposure to a clinically relevant concentration of NHC did not affect Ae. aegypti lifespan when delivered via a bloodmeal, but it slightly reduced the number of eggs developed in the ovaries. When mosquitoes were exposed to a blood meal containing both CHIKV and NHC, the compound did not significantly reduce virus infection and dissemination in the mosquitoes. This was confirmed by modelling and could be explained by pharmacokinetic analysis, which revealed that by 6 h post-blood-feeding, 90% of NHC had been cleared from the mosquito bodies. Our data show that NHC inhibited CHIKV replication in mosquito cells and gut tissue, but not in vivo when mosquitoes were provided with a CHIKV-infectious bloodmeal spiked with NHC. The pipeline presented in this study offers a suitable approach to identify anti-arboviral drugs that may impede replication in mosquitoes.


Asunto(s)
Aedes , Fiebre Chikungunya , Virus Chikungunya , Citidina/análogos & derivados , Animales , Ratones , Virus Chikungunya/fisiología , Replicación Viral , Antivirales
18.
J Travel Med ; 31(3)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38438165

RESUMEN

BACKGROUND: Vaccination plays a critical role in mitigating the burden associated with yellow fever (YF). However, there is a lack of comprehensive evidence on the humoral response to primary vaccination in the paediatric population, with several questions debated, including the response when the vaccine is administered at early ages, the effect of co-administration with other vaccines, the duration of immunity and the use of fractional doses, among others. This study summarizes the existing evidence regarding the humoral response to primary YF vaccination in infants and children. METHODS: Studies on the humoral response to primary YF vaccination in children aged 12 years or younger were reviewed. The humoral vaccine response rate (VRR), i.e. the proportion of children who tested positive for vaccine-induced YF-specific neutralizing antibodies, was pooled through random-effects meta-analysis and categorized based on the time elapsed since vaccination. Subgroup, meta-regression and sensitivity analyses were performed. RESULTS: A total of 33 articles met the inclusion criteria, with all but one conducted in countries where YF is endemic. A total of 14 028 infants and children entered this systematic review. Within three months following vaccination, the pooled VRR was 91.9% (95% CI 89.8-93.9). A lower VRR was observed with the 17DD vaccine at the meta-regression analysis. No significant differences in immunogenicity outcomes were observed based on age, administration route, co-administration with other vaccines, or fractional dosing. Results also indicate a decline in VRR over time. CONCLUSIONS: Primary YF vaccination effectively provides humoral immunity in paediatric population. However, humoral response declines over time, and this decline is observable after the first 18 months following vaccination. A differential response according to the vaccine substrain was also observed. This research has valuable implications for stimulating further research on the primary YF vaccination in infants and children, as well as for informing future policies.


Asunto(s)
Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Niño , Lactante , Humanos , Fiebre Amarilla/prevención & control , Anticuerpos Neutralizantes , Vacunación/métodos , Inmunidad Humoral , Anticuerpos Antivirales
19.
Children (Basel) ; 11(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38539409

RESUMEN

There are few data on yellow fever (YF) and hepatitis A (HA) off-label vaccination. Given the rising trend of travel to endemic countries, there is a growing necessity to broaden vaccination coverage among the pediatric population. For this reason, we aim to assess the adverse effects associated with off-label vaccination, with the ultimate purpose of expanding the vaccine spectrum. We analyzed ambispectively ninety-four children under 12 months of age who received YF or HA off-label vaccines. The YF vaccine was administered to children aged 6-9 months and those allergic to eggs (with a prior negative prick test and no history of anaphylaxis), while the HA vaccine was given to children aged 6-12 months. Overall, 71 (75%) were vaccinated against YF, and 57 (60%) against HA; 34 against both. All of them fulfilled off-label vaccination criteria. No immediate adverse effects (AEs) were reported. Mild common AEs (diarrhea, fever, or malaise) were experienced by 10.8% of patients within 10 days after vaccination. The rate of AEs associated with off-label vaccination for HA and YF is low, suggesting that the vaccines could be considered safe.

20.
Sci Rep ; 14(1): 7424, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548897

RESUMEN

The Zika virus (ZIKV) is a serious global public health crisis. A major control challenge is its multiple transmission modes. This paper aims to simulate the transmission patterns of ZIKV using a dynamic process-based epidemiological model written in ordinary differential equations, which incorporates the human-to-mosquito infection by bites and sewage, mosquito-to-human infection by bites, and human-to-human infection by sex. Mathematical analyses are carried out to calculate the basic reproduction number and backward bifurcation, and prove the existence and stability of the equilibria. The model is validated with infection data by applying it to the 2015-2016 ZIKV epidemic in Brazil. The results indicate that the reproduction number is estimated to be 2.13, in which the contributions by mosquito bite, sex and sewage account for 85.7%, 3.5% and 10.8%, respectively. This number and the morbidity rate are most sensitive to parameters related to mosquito ecology, rather than asymptomatic or human-to-human transmission. Multiple transmission routes and suitable temperature exacerbate ZIKV infection in Brazil, and the vast majority of human infection cases were prevented by the intervention implemented. These findings may provide new insights to improve the risk assessment of ZIKV infection.


Asunto(s)
Aedes , Epidemias , Infección por el Virus Zika , Virus Zika , Animales , Humanos , Brasil/epidemiología , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...